MacBook Air M4 16GB
Apple · M4 · 16GB Unified Memory · Can run 19 models
| Manufacturer | Apple |
| Unified Memory | 16 GB |
| Chip | M4 |
| CPU Cores | 10 |
| GPU Cores | 10 |
| Neural Engine Cores | 16 |
| Memory Bandwidth | 120 GB/s |
| MSRP | $1,099 |
| Released | Mar 12, 2025 |
AI Notes
The MacBook Air M4 16GB is the most portable way to run local AI models. With 16GB of unified memory and 120 GB/s bandwidth, it runs 7B models smoothly and can handle 13B models with Q4 quantization. Its fanless design means silent operation, making it great for AI experimentation anywhere.
Compatible Models
| Model | Parameters | Best Quant | VRAM Used | Fit |
|---|---|---|---|---|
| Llama 3.2 1B | 1B | Q8_0 | 3 GB | Runs |
| Gemma 2 2B | 2B | Q8_0 | 4 GB | Runs |
| Llama 3.2 3B | 3B | Q8_0 | 5 GB | Runs |
| Phi-3 Mini 3.8B | 3.8B | Q8_0 | 5.8 GB | Runs |
| DeepSeek R1 7B | 7B | Q8_0 | 9 GB | Runs |
| Mistral 7B | 7B | Q8_0 | 9 GB | Runs |
| Qwen 2.5 7B | 7B | Q8_0 | 9 GB | Runs |
| Qwen 2.5 Coder 7B | 7B | Q8_0 | 9 GB | Runs |
| Llama 3.1 8B | 8B | Q8_0 | 10 GB | Runs |
| Gemma 2 9B | 9B | Q8_0 | 11 GB | Runs |
| DeepSeek R1 14B | 14B | Q4_K_M | 9.9 GB | Runs |
| Phi-4 14B | 14B | Q4_K_M | 9.9 GB | Runs |
| Qwen 2.5 14B | 14B | Q4_K_M | 9.9 GB | Runs |
| Codestral 22B | 22B | Q4_K_M | 14.7 GB | Runs (tight) |
| StarCoder2 15B | 15B | Q8_0 | 17 GB | CPU Offload |
| Gemma 2 27B | 27B | Q4_K_M | 17.7 GB | CPU Offload |
| DeepSeek R1 32B | 32B | Q4_K_M | 20.7 GB | CPU Offload |
| Qwen 2.5 32B | 32B | Q4_K_M | 20.7 GB | CPU Offload |
| Command R 35B | 35B | Q4_K_M | 22.5 GB | CPU Offload |
6
model(s) are too large for this hardware.